

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

CLASS: X

SUB.: MATHS (NCERT BASED)

DATE: 07-09-2020

Triangle Similarity Criteria

All congruent figures are similar, but it does not mean that all similar figures are congruent.

Two polygons of the same number of sides are similar, if:

- a. Their corresponding angles are equal.
- b. Their corresponding sides are in the same ratio. Two triangles are similar, if:
 - a. Their corresponding angles are equal.
 - b. Their corresponding sides are in the same ratio.

 $\triangle ABC \sim \triangle PQR$

By C.P.S.T.

Corresponding Parts of Similar triangles

$$\angle A = \angle P, \angle B = \angle Q, \angle C = \angle R$$

 $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$

Theorem 6.3: (AAA similarity)

If the corresponding angles of the two triangles are the same, the corresponding sides are in the same ratio. So they are similar triangles.

Given: In $\triangle ABC$ and $\triangle DEF$, $\angle A = \angle D$, $\angle B = \angle E$, $\angle C = \angle F$.

To Prove: $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$ Hence $\triangle ABC \sim \triangle DEF$

<u>Case I</u> When AB = DE

<u>**Case II**</u> When $AB \neq DE$, AB < DE

<u>Construction</u>: In \triangle DEF, take ponts P and Q in sides DE and DF such that AB = DP and AC = DQ; join P_Q.

Proof:

In $\triangle ABC$ and $\triangle DEF$.

Here, AB = DP and AC = DQ (by Construction)

 $\angle A = \angle D$ (Given)

So, $\triangle ABC \cong \triangle DPQ$. (by S-A-S AXIOM)

So, $\angle ABC = \angle DPQ$,

but as given $\angle ABC = \angle DEF$.

This means that $\angle DPQ = \angle DEF$. [Corresponding angles]

Hence, PQ || EF

DP/PE = DQ/DF (Parallel line divides the sides of the triangle in equal ratio)

Hence, AB/DE = BC/EF = AC/DF.

Hence⊿ABC ~⊿DEF <u>Proved</u>